3.237 \(\int \frac{x^2 (a+b \sin ^{-1}(c x))^2}{\sqrt{d-c^2 d x^2}} \, dx\)

Optimal. Leaf size=206 \[ \frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c^3 \sqrt{d-c^2 d x^2}}-\frac{x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}+\frac{b x^2 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 c \sqrt{d-c^2 d x^2}}+\frac{b^2 x \sqrt{d-c^2 d x^2}}{4 c^2 d}-\frac{b^2 \sqrt{1-c^2 x^2} \sin ^{-1}(c x)}{4 c^3 \sqrt{d-c^2 d x^2}} \]

[Out]

(b^2*x*Sqrt[d - c^2*d*x^2])/(4*c^2*d) - (b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x])/(4*c^3*Sqrt[d - c^2*d*x^2]) + (b*x
^2*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]))/(2*c*Sqrt[d - c^2*d*x^2]) - (x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x
])^2)/(2*c^2*d) + (Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^3)/(6*b*c^3*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.268924, antiderivative size = 213, normalized size of antiderivative = 1.03, number of steps used = 6, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {4707, 4643, 4641, 4627, 321, 216} \[ \frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c^3 \sqrt{d-c^2 d x^2}}-\frac{x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}+\frac{b x^2 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 c \sqrt{d-c^2 d x^2}}+\frac{b^2 x \left (1-c^2 x^2\right )}{4 c^2 \sqrt{d-c^2 d x^2}}-\frac{b^2 \sqrt{1-c^2 x^2} \sin ^{-1}(c x)}{4 c^3 \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

(b^2*x*(1 - c^2*x^2))/(4*c^2*Sqrt[d - c^2*d*x^2]) - (b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x])/(4*c^3*Sqrt[d - c^2*d*
x^2]) + (b*x^2*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]))/(2*c*Sqrt[d - c^2*d*x^2]) - (x*Sqrt[d - c^2*d*x^2]*(a +
b*ArcSin[c*x])^2)/(2*c^2*d) + (Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^3)/(6*b*c^3*Sqrt[d - c^2*d*x^2])

Rule 4707

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
(f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcSin[c*x])^n)/(e*m), x] + (Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)^(m
 - 2)*(a + b*ArcSin[c*x])^n)/Sqrt[d + e*x^2], x], x] + Dist[(b*f*n*Sqrt[1 - c^2*x^2])/(c*m*Sqrt[d + e*x^2]), I
nt[(f*x)^(m - 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] &&
GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rule 4643

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 - c^2*x^2]/Sq
rt[d + e*x^2], Int[(a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*
d + e, 0] &&  !GtQ[d, 0]

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4627

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcSi
n[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1
- c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{d-c^2 d x^2}} \, dx &=-\frac{x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}+\frac{\int \frac{\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{d-c^2 d x^2}} \, dx}{2 c^2}+\frac{\left (b \sqrt{1-c^2 x^2}\right ) \int x \left (a+b \sin ^{-1}(c x)\right ) \, dx}{c \sqrt{d-c^2 d x^2}}\\ &=\frac{b x^2 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 c \sqrt{d-c^2 d x^2}}-\frac{x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}-\frac{\left (b^2 \sqrt{1-c^2 x^2}\right ) \int \frac{x^2}{\sqrt{1-c^2 x^2}} \, dx}{2 \sqrt{d-c^2 d x^2}}+\frac{\sqrt{1-c^2 x^2} \int \frac{\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{1-c^2 x^2}} \, dx}{2 c^2 \sqrt{d-c^2 d x^2}}\\ &=\frac{b^2 x \left (1-c^2 x^2\right )}{4 c^2 \sqrt{d-c^2 d x^2}}+\frac{b x^2 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 c \sqrt{d-c^2 d x^2}}-\frac{x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}+\frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c^3 \sqrt{d-c^2 d x^2}}-\frac{\left (b^2 \sqrt{1-c^2 x^2}\right ) \int \frac{1}{\sqrt{1-c^2 x^2}} \, dx}{4 c^2 \sqrt{d-c^2 d x^2}}\\ &=\frac{b^2 x \left (1-c^2 x^2\right )}{4 c^2 \sqrt{d-c^2 d x^2}}-\frac{b^2 \sqrt{1-c^2 x^2} \sin ^{-1}(c x)}{4 c^3 \sqrt{d-c^2 d x^2}}+\frac{b x^2 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 c \sqrt{d-c^2 d x^2}}-\frac{x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}+\frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c^3 \sqrt{d-c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 1.18478, size = 210, normalized size = 1.02 \[ \frac{12 a^2 c d x \left (c^2 x^2-1\right )-12 a^2 \sqrt{d} \sqrt{d-c^2 d x^2} \tan ^{-1}\left (\frac{c x \sqrt{d-c^2 d x^2}}{\sqrt{d} \left (c^2 x^2-1\right )}\right )-6 a b d \sqrt{1-c^2 x^2} \left (-2 \sin ^{-1}(c x)^2+2 \sin \left (2 \sin ^{-1}(c x)\right ) \sin ^{-1}(c x)+\cos \left (2 \sin ^{-1}(c x)\right )\right )+b^2 d \sqrt{1-c^2 x^2} \left (4 \sin ^{-1}(c x)^3+\left (3-6 \sin ^{-1}(c x)^2\right ) \sin \left (2 \sin ^{-1}(c x)\right )-6 \sin ^{-1}(c x) \cos \left (2 \sin ^{-1}(c x)\right )\right )}{24 c^3 d \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

(12*a^2*c*d*x*(-1 + c^2*x^2) - 12*a^2*Sqrt[d]*Sqrt[d - c^2*d*x^2]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-
1 + c^2*x^2))] - 6*a*b*d*Sqrt[1 - c^2*x^2]*(-2*ArcSin[c*x]^2 + Cos[2*ArcSin[c*x]] + 2*ArcSin[c*x]*Sin[2*ArcSin
[c*x]]) + b^2*d*Sqrt[1 - c^2*x^2]*(4*ArcSin[c*x]^3 - 6*ArcSin[c*x]*Cos[2*ArcSin[c*x]] + (3 - 6*ArcSin[c*x]^2)*
Sin[2*ArcSin[c*x]]))/(24*c^3*d*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.271, size = 612, normalized size = 3. \begin{align*} -{\frac{{a}^{2}x}{2\,{c}^{2}d}\sqrt{-{c}^{2}d{x}^{2}+d}}+{\frac{{a}^{2}}{2\,{c}^{2}}\arctan \left ({x\sqrt{{c}^{2}d}{\frac{1}{\sqrt{-{c}^{2}d{x}^{2}+d}}}} \right ){\frac{1}{\sqrt{{c}^{2}d}}}}-{\frac{{b}^{2} \left ( \arcsin \left ( cx \right ) \right ) ^{2}{x}^{3}}{2\,d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}+{\frac{{b}^{2} \left ( \arcsin \left ( cx \right ) \right ) ^{2}x}{2\,{c}^{2}d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{{b}^{2}\arcsin \left ( cx \right ){x}^{2}}{2\,dc \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}+{\frac{{b}^{2}{x}^{3}}{4\,d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{{b}^{2}x}{4\,{c}^{2}d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{{b}^{2} \left ( \arcsin \left ( cx \right ) \right ) ^{3}}{6\,d{c}^{3} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}+{\frac{{b}^{2}\arcsin \left ( cx \right ) }{4\,d{c}^{3} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{ab \left ( \arcsin \left ( cx \right ) \right ) ^{2}}{2\,d{c}^{3} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{ab\arcsin \left ( cx \right ){x}^{3}}{d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{ab{x}^{2}}{2\,dc \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}+{\frac{ab\arcsin \left ( cx \right ) x}{{c}^{2}d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}+{\frac{ab}{4\,d{c}^{3} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x)

[Out]

-1/2*a^2*x/c^2/d*(-c^2*d*x^2+d)^(1/2)+1/2*a^2/c^2/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))-1
/2*b^2*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*arcsin(c*x)^2*x^3+1/2*b^2*(-d*(c^2*x^2-1))^(1/2)/c^2/d/(c^2*x^2-1)
*arcsin(c*x)^2*x-1/2*b^2*(-d*(c^2*x^2-1))^(1/2)/c/d/(c^2*x^2-1)*arcsin(c*x)*(-c^2*x^2+1)^(1/2)*x^2+1/4*b^2*(-d
*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*x^3-1/4*b^2*(-d*(c^2*x^2-1))^(1/2)/c^2/d/(c^2*x^2-1)*x-1/6*b^2*(-d*(c^2*x^2-
1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^3/d/(c^2*x^2-1)*arcsin(c*x)^3+1/4*b^2*(-d*(c^2*x^2-1))^(1/2)/c^3/d/(c^2*x^2-1)*
arcsin(c*x)*(-c^2*x^2+1)^(1/2)-1/2*a*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^3/d/(c^2*x^2-1)*arcsin(c*x)
^2-a*b*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*arcsin(c*x)*x^3-1/2*a*b*(-d*(c^2*x^2-1))^(1/2)/c/d/(c^2*x^2-1)*(-c
^2*x^2+1)^(1/2)*x^2+a*b*(-d*(c^2*x^2-1))^(1/2)/c^2/d/(c^2*x^2-1)*arcsin(c*x)*x+1/4*a*b*(-d*(c^2*x^2-1))^(1/2)/
c^3/d/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (b^{2} x^{2} \arcsin \left (c x\right )^{2} + 2 \, a b x^{2} \arcsin \left (c x\right ) + a^{2} x^{2}\right )} \sqrt{-c^{2} d x^{2} + d}}{c^{2} d x^{2} - d}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-(b^2*x^2*arcsin(c*x)^2 + 2*a*b*x^2*arcsin(c*x) + a^2*x^2)*sqrt(-c^2*d*x^2 + d)/(c^2*d*x^2 - d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \left (a + b \operatorname{asin}{\left (c x \right )}\right )^{2}}{\sqrt{- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x**2*(a + b*asin(c*x))**2/sqrt(-d*(c*x - 1)*(c*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{2}}{\sqrt{-c^{2} d x^{2} + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)^2*x^2/sqrt(-c^2*d*x^2 + d), x)